https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
1.1 Survey
[1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. “Deep learning.” Nature 521.7553 (2015): 436-444. [pdf] (Three Giants’ Survey) :star::star::star::star::star:
机器学习被广泛用于图像、语音、推荐。传统机器学习需要小心的构造特征。
深度学习是一种 Represention learning,可以自动构建特征。它在一层构建特征,然后输出给更抽象的下一层。
以图像为例,第1层检测不同角度和位置的 edge 是否存在,而第2层能检测图案,第3层可能把图案组合起来,如此等等。
深度学习在解决以前的一些难题上是重大突破,它可以很好的发现高维复杂的特征,所以广泛用于科学、商业、政府。在 image recognition、speech recognition 等方面都打破了记录,还在药品分子建模、脑科学、DNA开合预测方便击败其它机器学习模型。在NLP领域,用于 topic classification, sentiment analysis, question answering,translation
有监督学习:设定一个优化目标(得分或距离),然后用 SGD 去优化参数。
现代的神经元基本都用 ReLU,它训练更快,历史上用 sigmoid 更多。
以前人们认为局部最优是一个问题,近期人们发现更大的问题其实是 saddle points
NLP领域
- 2006年 加拿大CIFAR 团队引入了无监督过程,整个系统可以用 backpropagation 做 fine-tune
- 2009年,在GPU上训练 语音识别任务,加快了10~20倍,打破了记录
CV领域。filter layer 可以用来提取特征。pooling layer 也需要,因为 filter layer 提取的特征可能差别很大,
词向量之前,普遍的做法是 n-gram
RNNs 是很强大的动态系统,但是训练困难,因为面临梯度爆炸和梯度消失的问题
翻译模型:先用一个 encoder 把整个句子意义提取成一个向量,然后用 decoder 把这个向量翻译成另一种语言
1.2 Deep Belief Network(DBN)(Milestone of Deep Learning Eve)
[2] Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. “A fast learning algorithm for deep belief nets.” Neural computation 18.7 (2006): 1527-1554. [pdf](Deep Learning Eve) :star::star::star:
[3] Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. “Reducing the dimensionality of data with neural networks.” Science 313.5786 (2006): 504-507. [pdf] (Milestone, Show the promise of deep learning) :star::star::star:
借助多层神经网络,高维数据可以转为低维数据。
在这个“autoencode” 中,可以用 gradient descent 来优化,前提是 initial weights 已经接近最优解了。
本文介绍了一种初始化 weights 的方案,使得 autoencoder 表现效果比 PCA 好很多
1.3 ImageNet Evolution(Deep Learning broke out from here)
[4] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. “Imagenet classification with deep convolutional neural networks.” Advances in neural information processing systems. 2012. [pdf] (AlexNet, Deep Learning Breakthrough) :star::star::star::star::star:
[5] Simonyan, Karen, and Andrew Zisserman. “Very deep convolutional networks for large-scale image recognition.” arXiv preprint arXiv:1409.1556 (2014). [pdf] (VGGNet,Neural Networks become very deep!) :star::star::star:
[6] Szegedy, Christian, et al. “Going deeper with convolutions.” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. [pdf] (GoogLeNet) :star::star::star:
[7] He, Kaiming, et al. “Deep residual learning for image recognition.” arXiv preprint arXiv:1512.03385 (2015). [pdf] (ResNet,Very very deep networks, CVPR best paper) :star::star::star::star::star:
1.4 Speech Recognition Evolution
[8] Hinton, Geoffrey, et al. “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups.” IEEE Signal Processing Magazine 29.6 (2012): 82-97. [pdf] (Breakthrough in speech recognition):star::star::star::star:
[9] Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hinton. “Speech recognition with deep recurrent neural networks.” 2013 IEEE international conference on acoustics, speech and signal processing. IEEE, 2013. [pdf] (RNN):star::star::star:
[10] Graves, Alex, and Navdeep Jaitly. “Towards End-To-End Speech Recognition with Recurrent Neural Networks.” ICML. Vol. 14. 2014. [pdf]:star::star::star:
[11] Sak, Haşim, et al. “Fast and accurate recurrent neural network acoustic models for speech recognition.” arXiv preprint arXiv:1507.06947 (2015). [pdf] (Google Speech Recognition System) :star::star::star:
[12] Amodei, Dario, et al. “Deep speech 2: End-to-end speech recognition in english and mandarin.” arXiv preprint arXiv:1512.02595 (2015). [pdf] (Baidu Speech Recognition System) :star::star::star::star:
[13] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, G. Zweig “Achieving Human Parity in Conversational Speech Recognition.” arXiv preprint arXiv:1610.05256 (2016). [pdf] (State-of-the-art in speech recognition, Microsoft) :star::star::star::star: