丢弃原因:整合到 随机变量的数字特征
随机变量矩阵的推导
\(x=\left ( \begin{array}{ccc} x_1\\x_2\\x_3\\...\\x_k \end{array} \right ),
y=\left ( \begin{array}{ccc} y_1\\y_2\\y_3\\...\\y_k \end{array} \right )\)是随机变量矩阵
a,b是常数,
\(c=\left ( \begin{array}{ccc} c_1\\c_2\\c_3\\...\\c_k \end{array} \right ),
d=\left ( \begin{array}{ccc} d_1\\d_2\\d_3\\...\\d_k \end{array} \right )\)是常数向量
$A,B$是矩阵
那么有这些结论:
1. 定义均值和方差
\(Ex=\left ( \begin{array}{ccc} Ex_1\\Ex_2\\Ex_3\\...\\Ex_k \end{array} \right )\)
定义:$cov(x,y)=(cov(x_i,y_j))_ {p\times p}$
2. 线性组合
$E(ax+c)=aEx+c$
$D(bx+c)=b^2Dx$
$E(Ax)=AE(x),E(x^TA^T)=E(x^T)A^T$
$cov(c^Tx,d^Tx)=c^T D(x) d$
(所以$D(c^Tx)=c^T D(x) c$)
3. 线性组合plus
$cov(y,x)=(cov(x,y))^T$
$cov(Ax,y)=A cov(x,y)$(用定义展开立即可证)
$cov(x,By)=(cov(By,x))^T=(Bcov(y,x))^T=(cov(y,x))^TB^T=cov(x,y)B^T$
由上面两个式子,
$cov(Ax,By)=Acov(x,y)B^T$